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Abstract. A beautifully simple model introduced a couple of decades ago, Toom’s cellular automaton,
revealed that non-equilibrium systems may exhibit generic bistability, i.e. two-phase coexistence over a
finite area of the (two-dimensional) phase diagram, in violation of the equilibrium Gibbs phase rule. In
this paper we analyse two interfacial models, describing more realistic situations, that share with Toom’s
model a phase diagram with a broad region of phase coexistence. An analysis of the interfacial models
yields conditions for generic bistability in terms of physically relevant parameters that may be controlled
experimentally.

PACS. 05.70.Fh Phase transitions: general studies – 05.40.Ca Noise – 05.50.+q Lattice theory and statis-
tics (Ising, Potts, etc.)

1 Introduction

Gibbs’ phase rule states that two-phase coexistence of a
single-component system, characterized by an n - dimen-
sional parameter-space, may occur in an n − 1 - dimen-
sional region. For example, the two equilibrium phases
of the Ising model coexist on a line in the temperature-
magnetic-field phase diagram. Nonequilibrium systems
may violate this rule and several models, where phase co-
existence occurs over a finite (n-dimensional) region of the
parameter space, have been reported. The first example of
this behaviour was found in Toom’s model [1–3], that ex-
hibits generic bistability, i.e. two-phase coexistence over a
finite region of its two-dimensional parameter space (see
Sect. 2). In addition to its interest as a genuine nonequilib-
rium property, generic multistability, defined as a gener-
alization of bistability, is both of practical and theoretical
relevance. In particular, it has been used recently to argue
that some complex structures appearing in nature could
be truly stable rather than metastable (with important
applications in theoretical biology), and as the theoretical
basis for an error-correction method in computer science
(see [3,4] for an illuminating and pedagogical discussion
of these ideas).

The necessary ingredients to generate broad (n -
dimensional) phase-coexistence in Toom’s model have
been discussed in [2], where general criteria were also iden-
tified. The main idea is that, to obtain generic bistability,
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a nonequilibrium mechanism that prevents the growth of
the stable phase while enhancing the stability of the other
one, must exist. This is achieved in Toom’s model by in-
troducing an explicit, somewhat artificial, asymmetry in
the dynamic rules.

Recent progress in nonequilibrium statistical mechan-
ics has led to the analysis of more realistic, physically
motivated, models that also exhibit generic bistability. In
this paper we describe two such examples, both interfa-
cial models of pinning-depinning transitions. The analo-
gies and differences with Toom’s model are described in
detail providing the reader with a general view of the rel-
evant nonequilibrium physical mechanisms. In particular,
we identify the ingredients, of the physically motivated
models, that are responsible for the emergence of generic
multistability.

This paper is organized as follows. In Section 2 we
review Toom’s model. The following two sections are de-
voted to the description of the two interfacial models ex-
hibiting broad phase-coexistence. A general discussion as
well as the conclusions are given in the last section.

2 Brief review of Toom’s NEC model

In the following we describe very briefly Toom’s NEC
(North-East-Center) model and discuss some of its ba-
sic properties. More detailed descriptions may be found
in the original papers by Toom [1] and [2,3,5].
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Fig. 1. Phase diagram of Toom’s model, showing the phases
with positive and negative “magnetization” (M) as well as the
broad coexistence region.

The model is defined on a two-dimensional square lat-
tice, with sites occupied by a spin-like variable, si = ±1.
The state of the system evolves by simultaneous updat-
ing of the spins according to the following rules: i) The
value of any given spin is determined by the majority rule
applied to a neighborhood that includes the spin itself
(C=center) and its neighbors to the north (N) and to the
east (E). ii) If as a result of (i) the spin points up (down), it
is inverted with probability q (p). These rules are iterated
leading eventually to a statistically stationary state. Dif-
ferent types of boundary conditions may be implemented
but here we consider periodic boundary conditions only.

Toom’s NEC model has two parameters, q and p. Ob-
viously, in the symmetric situation p = q both up and
down spins are equally favored, while for p > q (q > p)
up (down) spins are preferred. A bias field H may be de-
fined, H = (p − q)/(p + q), as the analog of the exter-
nal magnetic field in the standard Ising model. Likewise,
the noise intensity is measured by the temperature-like
parameter T = p + q. The associated phase diagram in
the (H, T ) plane is shown in Figure 1. The solid lines
are first-order phase boundaries between the one-phase re-
gion, with positive or negative magnetization (unshaded
area), and the two-phase coexistence region (shaded area).
The upper and lower phase boundaries merge at a critical
point at (H = 0, Tc). We note that the two-phase coex-
istence region in the Ising model is the segment of line
T < Tc at H = 0. By contrast, here phases of positive and
negative magnetization lose their stability at −H(T ) and
H(T ), respectively, and the coexistence surface is given by
−H(T ) < H < H(T ) for T < Tc. In particular, the lower
the temperature, the larger the value of |H | at the first-
order phase boundaries, implying that at low intensity of
noise the system can sustain phase coexistence even for
relatively large values of the bias. This is indeed surpris-
ing: In the presence of a relatively large bias, a phase with
the opposite magnetization may be truly stable.

Inspection of the dynamical rules leads immediately to
the conclusion that, in the deterministic limit T = 0, an

initially horizontal interface, separating two semi-infinite
planes of up and down spins, will remain immobile. The
same will happen if the interface is vertical, or oriented
at 45◦ along the NE-SW diagonal. On the other hand, if
the interface is oriented at −45◦ along the NW-SE diag-
onal, it will move in a direction perpendicular to it, with
constant velocity, and the phase to the right of the inter-
face will advance downwards “eroding” the phase to the
left. Thus, any island of, say, up spins in a sea of down
spins is effectively eliminated since it can be inscribed in a
right triangle with the hypotenuse along the NW-SE diag-
onal. If noise and bias are switched on, the situation does
not change much: the phase to the right of the interface
will advance even if it is unfavored by the bias, provided
that both T and H are sufficiently small. Upon further
increase of the parameters, a point is reached where the
unfavored phase is no longer stable, signaling the end of
the broad coexistence region [3].

The existence of a broad coexistence region in Toom’s
model has been rigorously demonstrated [1]. It was also
shown that this feature does not depend on the discrete-
ness of the spin variables or of the space-time [5]. The only
relevant ingredient seems to be the spatial asymmetry of
the nonequilibrium rules. These rules act differently on
the interfacial motion depending on the initial orientation
of the interface. As as a result, islands of spins of the mi-
nority phase are unstable even if the phase itself is favored
by the bias field.

As a final remark, we mention that the nature of the
fluctuations of NEC interfaces separating up- from down-
spin regions, was investigated and was found to be related
to Kardar-Parisi-Zhang (KPZ) [6,7] nonequilibrium dy-
namics in the biased case, and to (equilibrium) Edwards-
Wilkinson (EW) relaxation dynamics [6,7] in the unbiased
one [8].

3 Nonequilibrium depinning of a bound
interface

The second example to be discussed arises in the con-
text of nonequilibrium bound interfaces, and has relevance
in nonequilibrium wetting, synchronization transitions in
extended systems, and general pinning-depinning transi-
tions [9–13]. Most of the material presented in this section
is already known, but for the sake of completeness we in-
clude it here.

Consider an interface separating two bulk phases, A
and B (see Fig. 2). Let a be the chemical potential dif-
ference between these two phases, D the surface tension
of the AB interface, and h(x, t) the local height measured
from a binding wall or substrate. The interaction between
the latter and the interface is usually modeled by a Morse
potential

V (h) = be−h + e−2h/2, (1)

where the repulsive term restricts the interface from fluc-
tuating into the unphysical region h < 0, as shown in
Figure 3. In the absence of conservation laws, the most
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Fig. 2. Interface between the A and B phases, at a distance
from the wall.
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Fig. 3. Binding potential for positive and negative values of b.
For b < 0 the potential is attractive, exhibiting a local mini-
mum near the wall.

generic nonequilibrium interfacial equation is

∂th(x, t) = D∇2h + λ(∇h)2 + a − ∂V (h)
∂h

+ η(x, t), (2)

where η is a Gaussian white noise term, that accounts for
the thermal fluctuations, and λ is the strength of the KPZ
non-linear term, which acts as an external force pushing
the tilted interfacial regions against the wall. Now, two
different physical situations may occur depending on the
sign of b [14,15].

For b ≥ 0, the wall is purely repulsive. As a function
of a, a continuous, nonequilibrium phase transition from
a pinned to a moving interface will occur. Here, we shall
not consider this transition. It has been studied exten-
sively and the critical exponents, scaling functions, etc, are
well known (see [14,15] for recent reviews). Assume then
that b is negative [16]. In this case, the potential V (h) in-
cludes an attractive term (see Fig. 3) which describes the
affinity of the substrate for the A phase [9]. Such a term
is also required in the context of synchronization transi-
tions [13]. Under these conditions, it can be argued that
pinned and depinned phases lose their stability at different
points, provided that λ < 0. For the depinned phase this
happens at a = a+ for any value of b (Fig. 4). To see this,
notice that as far as their long-time properties are con-
cerned, depinned interfaces may be considered effectively
free. Thus, the wall potential may be neglected implying
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Fig. 4. Phase diagram as a function of a and b. A broad phase
coexistence region (shaded area) is observed. Insets: order-
parameters (average velocity and average height) at the phase
boundaries delimiting the broad coexistence region. In the left-
most (rightmost) panel the height (velocity) changes discontin-
uously while the velocity (height) changes continuously.
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Fig. 5. Typical potential and pinned interface, close to the
pinning-to-depinning transition line (rightmost transition in
the previous figure). Sites away from the potential-well are
pulled by the positive linear term a > a+. In this way, charac-
teristic triangular fluctuations appear and are eliminated, in a
region where the depinned phase is also stable.

that the average interfacial velocity 〈v〉 is independent of b;
this implies in turn that the locus of the depinning tran-
sition, where 〈v〉 changes from positive (depinned) to zero
(pinned), is also independent of b. Note that the transition
is continuous in terms of the usual order-parameter, 〈v〉,
but discontinuous in terms of the average interface posi-
tion, 〈h〉, that jumps from infinity (depinned) to a finite
value close to the potential minimum (pinned).

On the other hand, the pinned phase loses its stability
when the density of pinned sites, i.e. sites within the at-
tractive potential well, vanishes. This happens at a value
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a∗(b) > a+ which depends on b. It has been shown [13,14]
that this depinning transition is related to directed per-
colation (DP) [17]. In Figure 5 we plot a typical pinned
interface within the coexistence region. Most of the sites
lie within the potential well. Those patches which, owing
to fluctuations, overcome the potential barrier are locally
depinned and grow quickly to form triangular structures,
with a well defined slope, anchored at the wall (Fig. 5).
Driven by the negative nonlinear term, λ(∇h)2, these tri-
angles shrink at a constant velocity revealing the mecha-
nism for the elimination of islands of the depinned phase.
Therefore, even if the depinned phase is stable, initially
pinned interfaces will remain so, since a mechanism for the
elimination of islands of the depinned phase does exist. By
contrast, for systems with λ > 0, broad phase coexistence
does not occur because triangular fluctuations are pulled
away from the wall [14,18] and thus there is no mechanism
to eliminate the minority phase islands.

As the stability threshold a∗(b) is approached, the size
of the depinned regions increases until they extend over
the whole system. Then the triangular fluctuations cannot
be eliminated and the interface is depinned. Consequently,
for b < 0 pinned and depinned phases lose their stability at
different values of the control parameter a. Between these
values, there is a broad region of phase-coexistence where
initially pinned interfaces remain pinned, while moving
interfaces keep on moving. This remains the case in the
infinitely-large system-size limit [19].

Let us stress that while the transition at a∗ is con-
trolled by the effect of fluctuations that make pinned sites
jump over the potential well, the one at a+ is controlled
by the average velocity of the free interface. Therefore two
different mechanisms are at play. Essential for the broad
phase-coexistence region is the asymmetric role played by
the potential on pinned and depinned interfaces: the poten-
tial has no effect on depinned interfaces, while it stabilizes
pinned interfaces in a region where depinned interfaces are
also stable. The potential acts as an asymmetric force that
depends on the state of the interface.

The dynamical asymmetry of the potential, however
strong, cannot by itself produce generic bistability. A non-
equilibrium ingredient is also needed, as can be seen by
letting λ = 0 in equation (2). This results in the equili-
brium EW equation in the presence of an attractive poten-
tial, which describes the pinning-depinning transition of
an equilibrium interface where no broad phase-coexistence
exists. As in Toom’s model, it is the combination of the
nonequilibrium nature and the asymmetry of the dynam-
ics that provides the mechanism for the elimination of mi-
nority phase islands, required for the existence of a broad
region of phase coexistence.

Before ending this section, let us remark that the phe-
nomenology described above is not unique to the solutions
of the continuum equation (2); it was first noticed in dis-
crete models of nonequilibrium wetting [18]. In addition,
broad phase-coexistence is still observed when long-ranged
potentials or slightly different nonequilibrium dynamics
are considered.

4 Pinning-depinning in disordered media

The third example to be discussed concerns the transitions
between static and moving interfaces in the presence of
quenched disorder. Relevant applications are ubiquitous
and include solid-on-solid friction experiments, charge
density waves [20], wetting of rough surfaces [21], vortex
lines in type II superconductors [22], and earthquakes [23],
to mention but a few.

A familiar case is provided by elastic, extended ob-
jects sliding against rough surfaces. Segments of the slid-
ing object may be pinned by the inhomogeneities of the
medium, only to be set into motion by the elastic forces
from neighboring regions that have overcome the resis-
tance of the medium and move freely. The final, average
velocity will depend on the strength of the applied exter-
nal force. A simplified model that purports to capture this
phenomenology is the “Quenched Edwards Wilkinson”
(QEW) equation (see [6,7])

∂th(x, t) = D∇2h(x, t) + F + η(x, h(x, t)). (3)

This equation describes an elastic interface, given by
the height profile h(x, t), with surface tension D, un-
der the influence of a constant external driving term F ,
and quenched noise η(x, h(x, t)). It exhibits a continuous
pinning-depinning transition at a critical force Fc from a
pinned phase to a moving one. The universal properties of
this transition were studied using renormalization group
methods [24], and the critical exponents were measured
both computationally and experimentally [25,26].

The simplest way to simulate the dynamics of the uni-
versality class described by equation (3) is by using the
Leschhorn cellular automaton [27]. A quenched random
pinning force, f(x, h(x)), sampled homogeneously from
the interval [0, 1] is assigned to each coordinate (x, h(x)),
in one-dimension, and an interface profile h(x, t = 0) = 1
is taken as the initial condition. The dynamics then pro-
ceeds as follows: at every time step, and at every site x,
a local force is given by the sum of i) the discretized
Laplacian at that site, (h(x + 1) + h(x− 1)− 2h(x)), and
ii) the constant force F . If the local force exceeds the pin-
ning value, f(x), then h(x) is increased by one unit. The
process is repeated for all sites and iterated in time. Below
a given F ∗ the system is pinned with probability one (in
the infinite system-size limit), while for larger values of F
the interface advances with constant velocity. This phase
transition is in the QEW universality class, as described
by equation (3).

It is well known that the force required to start an ob-
ject moving is greater than that necessary to keep it going.
This is not captured by the QEW nor by the Leschhorn
automaton due to a no-passing rule: an interface cannot
overtake another one that is initially ahead of it. This is
due to the fact that at every point of contact the pinning
force is the same for both interfaces, whereas the elastic,
restoring force on the advanced interface is greater than
(or equal) the restoring force on the interface lagging be-
hind. As a consequence of this rule, coexistence of moving
and stationary interfaces is impossible since for a given
external force the interface attains a unique velocity.
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Fig. 6. Phase diagram as a function of F and M . A broad
phase-coexistence region (shaded) exists. The order parame-
ters (both average velocity and average height) are plotted for
both transitions delimiting the broad coexistence region. In the
lowermost (uppermost) panel the height (velocity) changes dis-
continuously while the velocity (height) changes continuously.
The threshold in the F+ branch, beyond which the transition
becomes discontinuous is not shown.

In an attempt to describing more realistic situations,
dynamic stress transfer mechanisms were introduced re-
cently in the Leschhorn automaton [28]. The local force at
every site is increased by an extra contribution iii) MS(x),
where M is a control parameter, and S(x), a stress-
overshoot, is equal to 1 if either the site at x or at any
of its nearest neighbors moved in the preceding time-step,
and 0 otherwise. In this way, locally moving interfaces are
more likely to keep on moving, while the stress-overshoots
do not play any role on locally pinned regions, where
S(x) = 0. This will produce an effect similar to that of in-
ertia [28]. While the original Leschhorn model has a tran-
sition at F ∗, the model endowed with stress-overshoots
can easily be seen to undergo a pinning transition at
F+ = F ∗ − M (see Fig. 6). To see this, note that at
all moving sites the local force is increased by M units,
therefore the effective external force is F +M (see [28] for
more details). On the other hand the depinning transi-
tion is not affected by the stress-overshoots, and therefore
remains at F ∗. This leads to a broad region of phase-
coexistence delimited by [F+, F ∗]. The transition at F+

was reported to be continuous (in terms of velocities) and
to belong to the QEW class for small M , and discontin-
uous above some value of M . The origin of this broad
region of phase-coexistence can be traced to the fact that
the stress-overshoots only affect the moving phase. There-
fore, regions expected to belong to the pinned phase in
the original model may become depinned due to the extra
force generated by inertia if they are initially moving, but
remain pinned if the interface is initially pinned. In a nut-
shell, broad coexistence results from the asymmetric role

played by the stress-overshoots in pinned and depinned in-
terfaces. It should be stressed that the hysteresis in this
type of models is a phony one, in the sense that it is de-
stroyed by the inclusion of thermal fluctuations [28].

As in the previous section, asymmetry is only a neces-
sary condition, not a sufficient one; here, a robust mecha-
nism for the elimination of islands of the minority phase is
also required. In this case, it is essential that the inertial
term depends on the state of motion of the neighboring
sites as well as on the site itself. The mechanism, however,
seems to be sensitive to the details of the model [28,29].

Other universality classes in the interfaces-in-random-
media realm are the quenched KPZ equation [6,7,30], the
EW equation with columnar noise [6,31], or the Mullins-
Herring equation [32]. All of them are susceptible of ex-
hibiting broad phase coexistence by an adequate inclusion
of inertial effects.

5 Discussion and conclusions

Toom’s NEC probabilistic automaton, introduced some
20 years ago, exhibits generic bistability. Its relation to
recently proposed, nonequilibrium models should be no-
ticed inasmuch as these models also exhibit broad phase-
coexistence. In the latter, realistic driving forces, a and F ,
favor interfacial motion, and are opposed by pinning
forces, the attractive wall and the random medium, re-
spectively. The latter depend crucially on the interfacial
state.

The key feature of Toom’s NEC model is the spatial
asymmetry of its dynamical rules, of a type only possi-
ble in nonequilibrium systems, that results in an efficient
mechanism for the elimination of islands of the minority
phase. Indeed, islands of minority spins shrink after they
have been created by fluctuations at a velocity roughly
independent of their radius. This is to be compared with
the Ising model in zero magnetic field, where a droplet of
radius r shrinks with a velocity proportional to 1/r.

These two ingredients are also present, in more re-
alistic terms, in the interfacial models discussed in this
paper, namely, a nonequilibrium interface bound by an
attractive wall (Eq. (2)), and an interface subject to stress-
overshoots advancing in a random medium (Eq. (3)). In
particular,

i) There is a clear asymmetry in both cases: the poten-
tial well acts only on locally pinned regions, and inertia
(stress-overshoots) does so only on locally moving ones.
Therefore, in one of the coexisting phases the additional
‘force’ plays no role. This dynamical asymmetry is the first
essential ingredient for broad phase-coexistence. Both the
attractive potential and the stress-overshoots have a clear
physical origin, and play the same role as the somewhat
artificial spatial asymmetry of Toom’s model.

ii) A robust mechanism for the elimination of islands
of the stable phase may be found in both examples. In the
first case, droplets of the depinned phase, that could make
the interface detach from the wall, acquire a triangular
shape and are ultimately suppressed by the combination
of the nonlinear force term λ < 0 and the wall. The islands
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of depinned sites cannot act as nucleation bubbles and are
eliminated in a time proportional to their size. Similarly,
stress-overshoots foster the depinning of segments of the
interface, when F+ < F < F ∗, preventing nucleation of
the pinned interface. As explained in the paper, modifica-
tions of these nonequilibrium models that fail to provide
such a mechanism, do not exhibit broad phase coexistence.

Note that while in the bound-interface model, it is the
pinned phase that is further stabilized by the asymmetric
dynamics, in the stress-overshoots model it is the depinned
phase that is further stabilized.

Another interesting issue concerns the nature and the
universality class of the continuous transitions. Interest-
ingly enough, for the model with stress-overshoots the con-
tinuous (in terms of 〈v〉) pinning transition, in the QEW
universality class as in the original inertia-free Leschhorn
automaton, persists for small M , whereas for larger M it
becomes discontinuous. On the other hand, despite pre-
vious claims, for the model of bound interfaces the de-
pinning transition remains continuous (in terms of 〈h〉),
but the universality class changes from the so-called mul-
tiplicative noise class [14] for b > 0, to directed percolation
for b < 0 (attractive wall).

In conclusion, the additional term required to generate
broad phase-coexistence can be a relevant or an irrelevant
perturbation to the continuous phase transition of the orig-
inal model. Moreover, the order of the transition may or
may not be affected by this term.

Finally, let us stress again, that in both interfacial
models, one of the transitions delimiting the broad co-
existence region can be continuous, at odds, with the in-
tuition developed in equilibrium situations. Nevertheless,
at least one of the boundaries has to be discontinuous,
as can be checked easily using continuity arguments (see
Figs. 4 and 6).

Summing up, two interfacial models exhibiting generic
bistability have been discussed. Both are nonequilibrium
models with an essential asymmetry in the dynamics. The
asymmetry is such that it eliminates islands of the minor-
ity phase efficiently. The stability of one of the phases is
enhanced, resulting in generic bistability over a broad re-
gion of parameter space. In both models this is achieved by
including realistic ingredients, namely an attractive wall
and inertia. This puts generic phase coexistence, with its
many conceptual and applied consequences, under a more
solid and motivated physical basis.

We acknowledge J. Schwarz for useful correspondence, as well
as S. Zapperi for useful comments and discussions. Support
from the Spanish MCyT (FEDER) under project BFM2001-
2841 is also acknowledged.
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